Abstract

Lead immobilization in 10 soils contaminated with Pb from different origin was examined using lime (CaCO3), a mix of cyclonic ash and steelshots (CA+ST), and a North Carolina phosphate rock. The immobilization efficacy of the three amendments was evaluated using single (CaCl2solution) and sequential (BCR method) chemical extractions in tandem with a microbiological Pb biosensor (BIOMET), a Pb phytotoxicity test, Pb plant uptake, and a Physiologically Based Extraction Test (PBET) mimicking Pb bioavailability in the human gastro-intestinal tract. The results demonstrated the necessity of using a diverse suite of bioavailability methodology when in situ metal immobilization is assessed. Sequential (BCR) extractions and PBET analysis indicated that PR was the most effective amendment. PR however, proved ineffective in totally preventing Pb phytotoxicity and Pb uptake on all soils tested. On the contrary, CA+ST and lime decreased BIOMET Pb, Pb phytotoxicity, and Pb uptake to a far greater extent than did PR. BIOMET detectable Pb and Pb uptake, however, were strongly related to Pb in soluble or exchangeable soil fractions (i.e., CaCl2 extractable). By combining these fractions with the acid-extractable Pb, accomplished by using acetic acid extractant, the recently developed BCR sequential extraction scheme appeared to have lost some valuable information on judging Pb bioavailability. The data show that different amendments do not behave consistently across different soils with different sources of contamination. Different indices for measuring Pb bioavailability are also not necessarily consistent within particular soil and amendment combinations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call