Abstract

Electrophilic cyclopentenone prostaglandins (cyPGs), such as 15-deoxy-Δ 12,14-prostaglandin J 2 (15dPGJ 2), initiate redox-based cell signaling responses including increased intracellular glutathione (GSH) synthesis. We investigated whether cyPGs facilitated GSH efflux and if members of the ATP-binding cassette (ABC) protein family mediated the efflux. Four human cell lines were treated with 1–6 μM cyPGs for 48 h. Media and cells were harvested for GSH measurements using HPLC-EC. CyPG treatment increased extracellular GSH levels two- to threefold over controls in HN4 and C38 cells and five- to sixfold in SAEC and MDA 1586 cells and was dependent on increased GSH synthesis. Our studies show that prostaglandin D 2 and its metabolites, prostaglandin J 2 and 15dPGJ 2, specifically induce GSH efflux compared to other eicosanoids. These higher extracellular GSH levels were associated with protection from tert-butylhydroperoxide. Superarray analysis of ABC transporters suggested only ABCG2 expression had a positive relationship in the four cell types compared with extracellular GSH increases after cyPG treatment. The ABCG2 substrate Hoechst 33342 inhibited extracellular GSH increase after 15dPGJ 2 treatment. We report for the first time that ABCG2 may play a role in GSH efflux in response to cyPG treatment and may link inflammatory signaling with antioxidant adaptive responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.