Abstract

This study investigated the effects of several calcium compounds on Phytophthora stem rot of soybean (Glycine max) and fungal growth and zoospore release of a Phytophthora sojae isolate in vitro. All concentrations of five formulated calcium products [Ca(COOH)2-A, Ca(COOH)2-B, Ca(COOH)2-C, CaSO4-A, and CaCl2-A] and two chemical compounds [CaCl2 and Ca(NO3)2] applied prior to inoculation significantly suppressed disease incidence. Among all the products and chemicals, Ca(COOH)2-A was the most effective in suppressing the incidence of disease. In most cases, no significant relationship was observed between inhibition of growth rate in vitro and disease reduction in growth chamber tests. Therefore, disease suppression recorded in laboratory experiments using pathogen mycelium was likely due to the responses of plant tissues rather than the direct inhibition of pathogen fungal growth by the calcium compounds. The extent of disease reduction was related to increased calcium uptake by plants, suggesting that calcium was the effective element in reducing Phytophthora stem rot. Seedling tray experiments using zoospores indicated that the application of 10 mM Ca(COOH)2-A was more effective for reducing incidence of disease under growth chamber conditions, compared to other concentrations. The presence of 4 to 20 mM of all seven calcium solutions decreased the release of zoospores, although 0.4 mM of all compounds significantly increased zoospore release. Therefore, disease reduction in the growth-chamber experiments was due to the multiple effects of direct suppression on zoospore release and fungal growth in combination with the response of the host plant tissue to Ca(COOH)2-A.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.