Abstract

BackgroundPediatric patients with high-risk neuroblastoma (HR NB) often fail to respond to upfront intensive multimodal therapy. Tumor-acquired suppression of apoptosis contributes to therapy resistance. Many HR NB tumors depend on the anti-apoptotic protein Bcl-2 for survival, through Bcl-2 sequestration and inhibition of the pro-apoptotic protein, Bim. Bcl-2 dependent xenografts derived from aggressive human NB tumors are cured with a combination of cyclophosphamide and ABT-737, a Bcl-2/Bcl-XL/Bcl-w small molecule antagonist. The oral analogue to ABT-737, Navitoclax (ABT-263), clinically causes an immediate drop in peripheral platelet counts as mature platelets depend on Bcl-xL for survival. This led to the creation of a Bcl-2 selective inhibitor, ABT-199 (Venetoclax). A Phase I trial of ABT-199 in CLL showed remarkable antitumor activity and stable patient platelet counts. Given Bcl-XL does not play a role in HR NB survival, we hypothesized that ABT-199 would be equally potent against HR NB.MethodsCytotoxicity and apoptosis were measured in human derived NB cell lines exposed to ABT-199 combinations. Co-Immunoprecipitation evaluated Bim displacement from Bcl-2, following ABT-199. Murine xenografts of NB cell lines were grown and then exposed to a 14-day course of ABT-199 alone and with cyclophosphamide.ResultsBcl-2 dependent NB cell lines are exquisitely sensitive to ABT-199 (IC50 1.5–5 nM) in vitro, where Mcl-1 dependent NBs are completely resistant. Treatment with ABT-199 displaces Bim from Bcl-2 in NB to activate caspase 3, confirming the restoration of mitochondrial apoptosis. Murine xenografts of Mcl-1 and Bcl-2 dependent NBs were treated with a two-week course of ABT-199, cyclophosphamide, or ABT-199/cyclophosphamide combination. Mcl-1 dependent tumors did not respond to ABT-199 alone and showed no significant difference in time to tumor progression between chemotherapy alone or ABT-199/cyclophosphamide combination. In contrast, Bcl-2 dependent xenografts responded to ABT-199 alone and had sustained complete remission (CR) to the ABT-199/cyclophosphamide combination, with one recurrent tumor maintaining Bcl-2 dependence and obtaining a second CR after a second course of therapy.ConclusionHR NB patients are often thrombocytopenic at relapse, raising concerns for therapies like ABT-263 despite its HR NB tumor targeting potential. Our data confirms that Bcl-2 selective inhibitors like ABT-199 are equally potent in HR NB in vitro and in vivo and given their lack of platelet toxicity, should be translated into the clinic for HR NB.

Highlights

  • Pediatric patients with high-risk neuroblastoma (HR NB) often fail to respond to upfront intensive multimodal therapy

  • IMR5, a MYCN amplified HR NB cell line characterized as Mantle cell lymphoma 1 (Mcl-1) dependent [17], was completely

  • Given our previous data implicates Bim is the key death effector in HR NB, we evaluated whether ABT-199 induces apoptosis in NB by displacing Bim from B-cell Lymphoma 2 (Bcl-2)

Read more

Summary

Introduction

Pediatric patients with high-risk neuroblastoma (HR NB) often fail to respond to upfront intensive multimodal therapy. The oral analogue to ABT-737, Navitoclax (ABT-263), clinically causes an immediate drop in peripheral platelet counts as mature platelets depend on Bcl-xL for survival. Chemotherapy induces the intrinsic pathway of apoptosis that is tightly regulated by mitochondrial resident Bcl-2 family proteins whose structure is comprised of one to four highly conserved Bcl-2 homology (BH) domains [1]. Within this family Bcl-2 proteins with multiple BH domains can be either anti-apoptotic (Bcl-2, Bcl-XL, Bcl-w, Mcl-1, Bfl-1/A1) or pro-apoptotic (Bax, Bak) and a subset containing only the BH3 domain are all pro-apoptotic (Bim, Bid, Puma, Bad, Bik, etc.) [2]. A cancer dependent on Bcl-2 for survival, such as chronic lymphocytic leukemia (CLL), has an abundance of Bcl-2 that actively sequesters the BH3 protein, Bim, making the cancer cell “primed to die” in the event that other cellular stressors activate additional BH3 proteins to overcome the Bcl-2 binding capacity within the cell [3]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.