Abstract
We study a new Selberg-type integral with n + m indeterminates, which turns out to be related to the deformed Calogero–Sutherland systems. We show that the integral satisfies a holonomic system of n + m non-symmetric linear partial differential equations. We also prove that a particular hypergeometric function defined in terms of super-Jack polynomials is the unique solution of the system. Some properties such as duality relations, integral formulas, Pfaff–Euler and Kummer transformations are also established. As a direct application, we evaluate the expectation value of ratios of characteristic polynomials in the classical β-ensembles of Random Matrix Theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.