Abstract

The molecular basis for the exquisite sensitivity of testicular germ cell tumours of adolescents and adults (TGCTs), ie seminomas and non-seminomatous germ cell tumours, to chemo/radiotherapy has not been fully clarified so far. It has been suggested that it may be dependent on factors involved in the regulation of apoptosis. Seladin-1 is a multi-functional protein involved in various biological processes, including apoptosis. The aim of our study was to assess the expression of seladin-1 in different histological types of TGCTs, known to have varying treatment sensitivity, in order to establish whether this protein may influence cisplatin responsiveness in vitro. Seladin-1 expression levels, both at the mRNA and at the protein level, were higher in the adjacent normal parenchyma than in the pathological counterparts. In tumoural tissues, the level of expression differed among TGCT histological types. The highest tumour-expression level was found in teratoma, whereas the lowest was detected in seminoma, corresponding to the different chemo/and radiosensitivities of these tumour types. In common with other cancers, in TGCT-derived cell lines seladin-1 showed anti-apoptotic properties through inhibition of caspase-3 activation. We confirmed our results using a non-seminomatous cell line model (NT2) before and after differentiation with retinoic acid. Significantly higher seladin-1 expression was observed in the differentiated derivatives (teratoma) and an inverse relationship was found between seladin-1 expression and the amount of cleaved caspase-3. Seladin-1 silencing or overexpression in this cell line supports involvement of seladin-1 in cisplatin responsiveness. Seladin-1 silencing was associated with greater cisplatin responsiveness demonstrated by decreased cell viability and increased expression of apoptotic markers. In contrast, overexpression of seladin-1 was associated with a higher survival rate and a clear anti-apoptotic effect. In conclusion, we have demonstrated for the first time an important role for seladin-1 in the biology of TGCTs and provided new insights into cisplatin responsiveness of these tumours.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call