Abstract

<h3>ABSTRACT</h3> Reovirus is undergoing clinical testing as an oncolytic therapy for breast cancer. Given that reovirus naturally evolved to thrive in <i>enteric</i> environments, we sought to better understand how <i>breast tumor</i> microenvironments impinge on reovirus infection. Reovirus was treated with extracellular extracts generated from polyoma virus middle T-antigen-derived mouse breast tumors. Unexpectedly, these breast tumor extracellular extracts inactivated reovirus, reducing infectivity of reovirus particles by 100-fold. Mechanistically, inactivation was attributed to proteolytic cleavage of the viral cell attachment protein σ1, which diminished virus binding to sialic acid-low tumor cells. Among various specific protease class inhibitors and metal ions, EDTA and ZnCl<sub>2</sub> effectively modulated σ1 cleavage, indicating that breast tumor-associated zinc-dependent metalloproteases are responsible for reovirus inactivation. Moreover, media from MCF7, MB468, MD-MB-231 and HS578T breast cancer cell lines recapitulated σ1 cleavage and reovirus inactivation, suggesting that inactivation of reovirus is shared among mouse and human breast cancers, and that breast cancer cells in by themselves can be a source of reovirus-inactivating proteases. Binding assays and quantification of sialic acid (SA) levels on a panel of cancer cells showed that truncated σ1 reduced virus binding to cells with low surface SA. To overcome this restriction, we generated a reovirus mutant with a mutation (T249I) in σ1 that prevents σ1 cleavage and inactivation by breast tumor-associated proteases. The mutant reovirus showed similar replication kinetics in tumorigenic cells, equivalent toxicity as wild-type reovirus in a severely compromised mouse model, and increased tumor titers. Overall, the data shows that tumor microenvironments have the potential to reduce infectivity of reovirus. <h3>SIGNIFICANCE</h3> We demonstrate that metalloproteases in breast tumor microenvironments can inactivate reovirus. Our findings expose that tumor microenvironment proteases could have negative impact on proteinaceous cancer therapies such as reovirus, and that modification of such therapies to circumvent inactivation by tumor metalloproteases merits consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.