Abstract
Adenosine, an endogenous inhibitory neuromodulator in the central nervous system, exerts anticonvulsant activity that is largely based on the inhibition of the release of excitatory amino acids. As a novel approach to treat pharmacoresistant partial epilepsies, the grafting of adenosine-releasing cells is foreseen to provide a local and sustained source of adenosine. The feasibility of this cell-based therapy was investigated in the present study by the intraventricular implantation of synthetic polymers that release adenosine. Kindled rats with a ventricular implant of an adenosine-releasing polymer showed a profound reduction of seizure activity. This was demonstrated not only by a 75% reduction of grade 5 seizures but also by a reduction of the amplitude and duration of afterdischarges in electroencephalographic (EEG) recordings. Kindled control rats that were implanted with bovine serum albumin (BSA)-containing polymers or were sham operated, continued to show their presurgery seizure pattern. Adenosine displayed antiepileptic activity when released in an amount of 20–50 ng per day. This finding sets the target for the required amount of adenosine to be released from future adenosine-releasing cells for antiepileptic therapy. The present results clearly support the feasibility of a novel therapy for epilepsy based on adenosine-releasing cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.