Abstract

Epilepsy cannot be successfully treated through medications or resection in about 30% of patients. Furthermore, an estimated 0.1 percent of epileptic patients suffer sudden deaths resulting from injuries sustained during seizures. For this reason, patients with intractable seizures need alternative therapeutic approaches. An engineered device tailored toward seizure prediction that warns patients of an impending seizure or that intervenes to prevent its occurrence may significantly decrease the burden of epilepsy. Although much research efforts have been directed at the development of a seizure prediction algorithm, a therapeutic or warning device that meets stringent clinical requirements is still elusive. In the present study a novel patient-specific seizure prediction method is proposed. The method is based on time-frequency analysis of scalp electroencephalogram (sEEG) and the use of state-of-the-art unsupervised feature representation learning techniques: reconstruction independent component analysis and sparse filtering. In a moving window analysis, a novel engineered bivariate EEG characterizing measure named Normalized Logarithmic Wavelet Packet Coefficient Energy Ratios (NLWPCER) was extracted from all possible combination of EEG channels and relevant frequency sub - bands. Thereafter unsupervised representation learning algorithm adapted to each patient through Bayesian optimization procedure was used to learn NLWPCER features representation or transformation suitable for data classification task. Two classification models: Artificial Neural Network (ANN) and Support Vector Machine (SVM) were developed and trained to learn preictal (pre-seizure) and interictal (normal) EEG feature vector patterns. The output of the classifiers was regularized through a post processing operation aimed at reducing false prediction rate (FPR) and making decision on the generation of prediction alarms. The proposed method was evaluated using approximately 545 h CHB-MIT scalp EEG recording of 17 patients with a total of 43 leading seizures. On the average, with SVM classifier the proposed seizure prediction algorithm achieved a sensitivity of 87.26% and false prediction rate of 0.08h-1 while with ANN classifier the algorithm achieved average sensitivity and false prediction rate of 75.49% and 0.13h-1 respectively. The proposed method was validated using an Analytic Random Predictor (ARP). The results obtained in this work opens a pathway for a robust and consistent real-time portable seizure prediction device suitable for clinical applications.

Highlights

  • Since scalp and intracranial EEG possess a characteristic pattern that varies across individuals with epilepsy both in non-seizure and seizure states [24], the method presented here resulting in seizure prediction algorithms is patient specific

  • The performance of the proposed seizure prediction method is considered significantly better than chance if the sensitivity

  • Scalp and intracranial EEG possess a characteristic pattern that varies across individuals with epilepsy both in non-seizure and seizure states

Read more

Summary

Introduction

It affects almost 1% of the world’s population. This neurological ailment is associated with recurrent, unprovoked epileptic seizures resulting from a sudden disturbance of brain function. One particular disabling aspect of epileptic seizures is their sudden and unpredictable nature, limiting patients’ activities and resulting in poor quality. Common treatment for epilepsy is through medication and surgery but these have grave repercussions or side effects [1] and fail to satisfactorily control seizures in approximately one-third of affected patients. A reliable seizure prediction system based on electroencephalogram (EEG) may significantly enhance the quality of life and safety of sufferers and increase the chance of controlling seizures by administering therapeutic agents as early as possible

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call