Abstract
Prediction of seizures is a difficult problem as the EEG patterns are not wide-sense stationary and change from seizure to seizure, electrode to electrode, and from patient to patient. This paper presents a novel patient-specific algorithm for prediction of seizures in epileptic patients. Cross-correlation coefficients are extracted every 2 seconds using a 4-second window with 50% overlap from focus electrodes identified by the epileptologist. Features are further processed by a second-order Kalman filter and then input to three different classifiers which include AdaBoost, radial basis function kernel support vector machine (RBF-SVM) and artificial neural network (ANN). The algorithm is tested on the long-term intra-cranial EEG (iEEG) database collected at the UMN epilepsy clinic. This database includes EEG recordings from 2 patients sampled from varying number of electrodes sampled at 2kHz. It is shown that the proposed algorithm achieves a high sensitivity and a low false positive rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.