Abstract

BackgroundClassification method capable of recognizing abnormal activities of the brain functionality are either brain imaging or brain signal analysis. The abnormal activity of interest in this study is characterized by a disturbance caused by changes in neuronal electrochemical activity that results in abnormal synchronous discharges. The method aims at helping physicians discriminate between healthy and seizure electroencephalographic (EEG) signals.MethodDiscrimination in this work is achieved by analyzing EEG signals obtained from freely accessible databases. MATLAB has been used to implement and test the proposed classification algorithm. The analysis in question presents a classification of normal and ictal activities using a feature relied on Hilbert-Huang Transform. Through this method, information related to the intrinsic functions contained in the EEG signal has been extracted to track the local amplitude and the frequency of the signal. Based on this local information, weighted frequencies are calculated and a comparison between ictal and seizure-free determinant intrinsic functions is then performed. Methods of comparison used are the t-test and the Euclidean clustering.ResultsThe t-test results in a P-value < 0.02 and the clustering leads to accurate (94%) and specific (96%) results. The proposed method is also contrasted against the Multivariate Empirical Mode Decomposition that reaches 80% accuracy. Comparison results strengthen the contribution of this paper not only from the accuracy point of view but also with respect to its fast response and ease to use.ConclusionAn original tool for EEG signal processing giving physicians the possibility to diagnose brain functionality abnormalities is presented in this paper. The proposed system bears the potential of providing several credible benefits such as fast diagnosis, high accuracy, good sensitivity and specificity, time saving and user friendly. Furthermore, the classification of mode mixing can be achieved using the extracted instantaneous information of every IMF, but it would be most likely a hard task if only the average value is used. Extra benefits of this proposed system include low cost, and ease of interface. All of that indicate the usefulness of the tool and its use as an efficient diagnostic tool.

Highlights

  • Classification method capable of recognizing abnormal activities of the brain functionality are either brain imaging or brain signal analysis

  • The proposed method is contrasted against the Multivariate Empirical Mode Decomposition that reaches 80% accuracy

  • All of that indicate the usefulness of the tool and its use as an efficient diagnostic tool

Read more

Summary

Introduction

Classification method capable of recognizing abnormal activities of the brain functionality are either brain imaging or brain signal analysis. The method aims at helping physicians discriminate between healthy and seizure electroencephalographic (EEG) signals. Electroencephalography (EEG) is an investigative method that provides information for the classification, diagnosis, and therapy of brain conditions. The frequency and energy content of EEG signals may contain helpful information about the nature of diseases affecting the brain. Physicians were asked to perform visual EEG analysis. Since the first commercially available programs were introduced, computerized EEG analysis systems have become more sophisticated and less expensive with an increasing number of available programs. The use of computerized EEG analysis has increased rapidly in health care. The information obtained via this computerized analysis is used to detect and diagnose normal and abnormal brain activities

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.