Abstract
We investigate the detailed distribution of hypocenters and focal mechanisms beneath the Tanzawa Mountains, central Japan, where the Izu-Bonin arc has collided into the central part of the Honshu arc. Remarkable differences are found to exist between the hypocenter distributions in the western and eastern parts. The hypocenters of earthquakes in the eastern part tend to be distributed in a horizontal zone, whereas those in the western part are distributed in a volume. The focal mechanisms in the eastern part are right-lateral reverse faulting mechanisms, and one of the nodal planes is consistent with the geometry of the Philippine Sea (PHS) plate in the region. These results suggest that most earthquakes in the eastern part occur along the upper surface of the subducting PHS plate. In contrast, the focal mechanisms in the western part, especially deep in the western part, exhibit a different feature. The stress states in these two regions are found to be significantly different. The maximum and minimum principal stress axes in the eastern part are slightly inclined, whereas those in the western part are oriented in approximately the vertical and horizontal directions, respectively. The stress field in the eastern part may be caused by a slab pull force induced from the deeper part of the subducted plate.
Highlights
The Tanzawa Mountains are located in the Izu-Honshu collision zone, where the Izu Bonin arc on the Philippine Sea (PHS) plate has been colliding into Honshu island on the Eurasian plate
We found that the earthquakes in Region A tend to be distributed within a horizontal zone (Fig. 3) that is approximately parallel to the upper surface of the PHS plate
We investigated the distribution of hypocenters, focal mechanisms, and stress states beneath the Tanzawa Mountains located in the Izu-Honshu collision zone
Summary
The Tanzawa Mountains are located in the Izu-Honshu collision zone, where the Izu Bonin arc on the Philippine Sea (PHS) plate has been colliding into Honshu island on the Eurasian plate. We relocated the hypocenters of the earthquakes that occurred under the Tanzawa Mountains based on the double-difference relocation method (DD method) (Waldhauser and Ellsworth, 2000) using the differential arrival times obtained by both manual picking and waveform cross-correlation analysis. The average relative location errors were 0.017 km in the EW direction, 0.015 km in the NS direction, and 0.023 km in the depth direction for the earthquakes that were relocated using both the manually picked and cross-correlation data. These events correspond to 68% of all relocated earthquakes. The error for P- and T -axes is generally within 5◦
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.