Abstract

Most seismological models for the interior of Mars lack an upper mantle low velocity zone. However, there is expected to be a large thermal gradient across the stagnant conductive lid (lithosphere) of Mars. This gradient should tend to decrease elastic wave velocities with increasing depth, with this effect dominating the opposing tendency caused by increasing pressure with depth because Mars has low gravity. An upper mantle lithosphere with a low velocity zone (LVZ) beneath a thin high velocity “seismic lid” is thus predicted. The upcoming NASA InSight mission includes a three-component seismometer, which should provide the first opportunity to directly detect any lithospheric LVZ in Mars. Seismic wavefields expected for Mars mantle velocity structures with or without a strong LVZ are very distinct. The LVZ models predict shadow zones for high-frequency seismic body wave phases such as P, S, PP and SS, etc. The most diagnostic waves that can be used to evaluate presence of a lithospheric LVZ given a single seismometer are intermediate-period global surface waves, which travel along the great circle from a seismic source to the seismometer. An LVZ produces distinctive dispersion, with a Rayleigh wave Airy phase around 100s period and very different surface wave seismograms compared to a model with no LVZ. Even a single observation of long-period surface waves from a known range can be diagnostic of the lithospheric structure. Establishing the existence of an LVZ has major implications for thermal evolution, volatile content and internal dynamics of the planet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.