Abstract

<p>The development of seismo-electric (SE) exploration techniques relies significantly upon being able to understand and quantify the strength of frequency-dependent SE conversion. However, there have been very few SE measurements or modelling carried out. In this paper we present two experimental methods for making such measurements, and examine how the strength of SE conversion depends on frequency, porosity, permeability, and why it is unusual in shales. The first is based on an electromagnetic shaker and can be used in the 1 Hz to 2 kHz frequency range. The second is a piezo-electric water-bath apparatus which can be used in the 1kHz to 500 kHz frequency range.</p><p>The first apparatus has been tested on samples of Berea sandstone. Both the in-phase and in-quadrature components of the streaming potential coefficient have been measured with an uncertainty of better than ±4%. The experimental measurements show the critical frequency at which the quadrature component is maximal, and the frequency of this component is shown to agree very well with both permeability and grain size. The experimental measurements have been modelled using several different methods.</p><p>The second apparatus was used to measure SE coupling as a function of porosity and permeability, interpreting the results using a micro-capillary model and current theory. We found a general agreement between the theoretical curves and the test data, indicating that SE conversion is enhanced by increases in porosity over a range of different frequencies. However, SE conversion has a complex relationship with rock permeability, which changes with frequency, and which is more sensitive to changes in the petrophysical properties of low-permeability samples. This observation suggests that seismic conversion may have advantages in characterizing low permeability reservoirs such as tight gas and tight oil reservoirs as well as shale gas reservoirs.</p><p>We have also carried out SE measurements on Sichuan Basin shales (permeability 1.47 – 107 nD), together with some comparative measurements on sandstones (0.2 – 60 mD). Experimental results show that SE conversion in shales is comparable to that exhibited by sandstones, and is approximately independent of frequency in the seismic frequency range (<1 kHz). Anisotropy which arises from bedding in the shales results in anisotropy in the streaming potential coefficient. Numerical modelling has been used to examine the effects of varying zeta potential, porosity, tortuosity, dimensionless number and permeability. It was found that SE conversion is highly sensitive to changes in porosity, tortuosity and zeta potential in shales. Numerical modelling suggests that the cause of the SE conversion in shales is enhanced zeta potentials caused by clay minerals, which are highly frequency dependent. This is supported by a comparison of our experimental data with numerical modelling as a function of clay mineral composition from XRD measurements. Consequently, the sensitivity of SE coupling to the clay minerals suggests that SE exploration may have potential for the characterization of clay minerals in shale gas and shale oil reservoirs.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.