Abstract

The Sichuan Basin is an expansive Mesozoic-Cenozoic basin in the southwestern mainland of China, with dinosaur fossils widely scattered and full-type accumulated in the Jurassic strata. Wangcang dinosaur fossil burial site is located at the southern foot of the Qinling Mountains and the southern wing of Micang Mountain Uplift in the northern Sichuan Basin. Geologic cross-section measurement, fieldwork, and study of 3D seismic profiles are carried out to explore the mechanism of rapid accumulation and burial of rich incomplete dinosaur fossils in Wangcang. The results show that both the sedimentary process and the tectonic function of the Shaximiao Formation in Wangcang have undergone major changes due to basin and mountain relationships during the sedimentary period. The Shaximiao Formation experienced a transition from the lacustrine sedimentation of the Qianfoya Formation to fluvial-deltaic facies, suggesting climatic and environmental changes. Notably, the Second Member of the Shaximiao Formation coincided with intensified seismic activities, we identified indicators of seismites, including sand pillows, seismic fractures, step faults, liquefied veins, shattering rocks, and seismic breccias, etc. Each set of seismites has different vertical sequences, and the typical liquefied structure deformation directly suggests seismic activities. Tectonically, while the Qianfoya Formation displayed reverse faults, the Shaximiao Formation showed a series of strike-slip normal faults. The seismites and sediment tectonic features reveal a correlation with the catastrophic mass mortality of dinosaurs in Wangcang. We propose that seismic events significantly impacted dinosaur habitats, leading to mass deaths and subsequent burials in the purplish-red argillaceous siltstone near Huaishu Village in Wangcang. For the first time, the seismites are presented as new evidence of tectonic shifts and seismic activities in Wangcang during the Middle Jurassic, and it provides a new perspective for dinosaur taphonomy in the Sichuan Basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call