Abstract

Seismicity released during lateral dike intrusions in the Manda Hararo–Dabbahu Rift (Afar, Ethiopia) provides indirect insight into the distribution and evolution of tensile stress along this magma‐assisted divergent plate boundary. In this paper, 5 dike intrusions among the 14 that form the 2005–present rifting episode are analyzed with local and regional seismic data. During dike intrusions, seismicity migrates over distances of 10–15 km at velocities of 0.5–3.0 km/h away from a single reservoir in the center of the rift segment, confirming the analogy with a slow spreading mid‐ocean ridge segment. Comparison with geodetic data shows that the reservoir is located 7 km down rift from the topographic summit of the axial depression. Dikes emplaced toward the north are observed to migrate faster and to be more voluminous than those migrating southward, suggesting an asymmetry of tension in the brittle‐elastic lithosphere. Seismicity during dike injections is concentrated near the propagating crack front. In contrast, faults and fissures in the subsurface appear to slip or open aseismically coeval with the intrusions. The seismic energy released during dike intrusions in the Manda Hararo Rift appears to be primarily modulated by the local magnitude of differential tensile stress and marginally by the rate of stress change induced by the intrusion. The low level of seismic energy accompanying dike intrusions, despite their significant volumes, is likely an indicator of an overall low level of tension in the lithosphere of this nascent plate boundary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call