Abstract

Using recently acquired three-dimensional seismic data, we summarize typical patterns for seismic-based identification and stage analysis of sedimentary units in the Eocene succession of the southern slope-break belts of the Bozhong sag, Bohai Bay Basin, China. The sedimentary units in the study area are characterized by progradational reflectors and mound-shaped, bidirectional downlapping reflectors in dip and strike directions, respectively. Differential characteristics of a distinct sedimentary unit within one lobe are documented. The major provenance direction is defined and characterized by the largest dip angles of reflectors, the longest transport distance of sediments, and the thickest deposits in comparison to other dip directions—all recognized in this study and serving as typical characteristics for sedimentary unit identification and separation from the overlapped sedimentary complex. This study also summarizes diverse patterns—including collateral and prograding types—of sedimentary unit contact relationships and stage analysis along dip and strike directions. Collateral patterns are composed of three subtypes: superimposed, antithetic, and isolated. Three sedimentary units—S1, S2, and S3—are recognized in the study area. Summarized patterns of sedimentary unit contact relationships indicate that S1 was deposited earliest and S3 latest. The proposed patterns supplement seismic-based sedimentologic studies. This work may serve as a useful reference for sand-body characterization and stage analysis in other basins and similar areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.