Abstract
Regardless of successful applications of the convolutional neural networks (CNNs) in different fields, its application to seismic waveform classification and first-break (FB) picking has not been explored yet. This letter investigates the application of CNNs for classifying time-space waveforms from seismic shot gathers and picking FBs of both direct wave and refracted wave. We use representative subimage samples with two types of labeled waveform classification to supervise CNNs training. The goal is to obtain the optimal weights and biases in CNNs, which are solved by minimizing the error between predicted and target label classification. The trained CNNs can be utilized to automatically extract a set of time-space attributes or features from any subimage in shot gathers. These attributes are subsequently inputted to the trained fully connected layer of CNNs to output two values between 0 and 1. Based on the two-element outputs, a discriminant score function is defined to provide a single indication for classifying input waveforms. The FB is then located from the calculated score maps by sequentially using a threshold, the first local minimum rule of every trace and a median filter. Finally, we adopt synthetic and real shot data examples to demonstrate the effectiveness of CNNs-based waveform classification and FB picking. The results illustrate that CNN is an efficient automatic data-driven classifier and picker.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.