Abstract

Topographical and mechanical properties of soil layers can lead to amplification or attenuation of seismic waves. Such a phenomena can be theoretically explained by means of ground response analysis. Definition of boundaries is of great concern in modeling ground response and application of boundaries with any constrain can lead to so called “trap box” effect in seismic waves in the model and hence to fictitious results. In present study, two-dimensional Finite Element Method (FEM) is applied in which boundaries known as “absorbing boundaries” are used to study the effect of wave scatter in valleys with different forms on the amplification or attenuation of SV waves. Comparison of the results is conducted for the current approach and those of the coupling Finite Element and the Infinite Element (sometimes called as FE-IFE) method. The results are also presented in non-dimensional diagrams of Au and Av for horizontal and vertical displacement amplitude respectively, through the valley span and its surrounding area. Comparison of the results also indicated that the proposed boundaries can improve the seismic analysis when coupled with the FEM. Also because of topographic irregularities, variations of displacement are seen inside the valley and around it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.