Abstract
Recent studies highlight the potential impact of earthquakes on cultural heritage sites and monuments, which in turn yield significant adverse impacts on economies, politics, and societies. Several aspects such as building materials, structural responses, and restoration strategies must be considered in the conservation of heritage structures. Timber is an old organic construction material. Most of the historic timber structures were not designed to withstand seismic forces; therefore, the seismic vulnerability assessment of heritage timber structures in areas with high seismic hazard is essential for their conservation. For this purpose, different strategies for the numerical modeling of heritage timber buildings have been developed and validated against tests results. After performing seismic analysis using detailed analytical methods and predicting the susceptible structural components, strengthening techniques should be utilized to mitigate the risk level. To this aim, various methods using wooden components, composite material, steel components, SMA etc., have been utilized and tested and are reviewed in this study. There are still some gaps, such as full-scale numerical modeling of strengthened buildings and investigating the soil–structure interaction effects on the seismic behavior of buildings that should be investigated.
Highlights
From a spiritual or a historical point of view and because of their technological value, conservation of heritage structures is important for our generation and the future ones
For the sake of reviewing the research studies about the seismic vulnerability assessment and strengthening of heritage timber buildings, three building types were categorized in this study
The systematic review shows the growth of the research studies about the seismic vulnerability assessment and strengthening of heritage timber buildings
Summary
From a spiritual or a historical point of view and because of their technological value, conservation of heritage structures is important for our generation and the future ones. ONloonglyinefaorrnausmseersiscainl mg oadnedlinrgepinrofcoerdcu-res of ing heritage structuhreersita[3ge6–ti4m0b]e.rHbuoiwldienvgesra,rethreevrieewisedstfoilrleaacnheoefdthfeothrrpeeesrtfrourcmturianlgsyasntemins.-dEaecphthsection review study focusing on the seismic vulnerability assessment and strengthening methodologies. Engineering Structures, Internatio tectural Heritage, and Construction and Building Materials are three wellpublished the highest number of articles. The visualizing bibliometric networks display that seismic vulnerability, ssttruuctural design, and historic preservation are the three most used keywords and investigated areas after historic timber structure. Different strategies for numerical modeling of heritage timber buildings are reviewed, different structural analysis methods have been discussed, and various Irnetrtohfeitftionllgoawnidngstrseencgtitohnesn,indgifftecrehnntiqsutreastaergeiepsrefosernnteudmaenrdicraelvmieowdeedli.ng of heritage For this aim, eatcimh bsecrtbiounilidsindgesdiacraeteredvtioewa ehde,rditiafgfeeretinmt bsterruscttruurcatluarnaal lsyyssitseme. (c) A simplified analytical model including different springs [55] (F: lateral load, p: vertical load, H: height, L: length, keq: 11, 661 equivalent stiffness of the corner joints, kel: equivalent stiffness, fi: Coulomb forces, h: timber log’s Buildings 202h1,e1i1g,h6t6) ForFothrethloeglohgohuoseusseysstyesmte,msh, esahreawrawllsalalsreartehethleatleartaelralol aloda-bde-abreianrginsgysstyesmte,man, dantdhethe pr3op.c2re.odLcouegdrHeuofruoesrefsothrethseimsiumlautiloatnioonf tohfitshsitsrsutcrtuucrtaulrsaylsstyesmteims tihsethseamsaemaes ains itnhethceasceasoef otifmtibmerber frafmraemFsoyersstteyhmestl,eomwg hh, oiwcuhsheiicsshyesmtiesmpel,omsyhpeeladoryiwnead[l5lsi1na–r5e[35t]1h.–eA5l3sat]ie.lrlauAlslstoraaidltl-eubdseatirrnaintFgeidgsyuisnrteemF9i,aga,untdrheeth9ferai,cttihoen fpriecnti-on dalonugpfdaldpltlorsnoruuhageodalgm[emAsnuc5nsae[me1lds,5ndo]liA1suaa.inug]lyinn.innlsrcssnukecdtlkaa[eilmfin5nemolanet1lerlneee,ael]ddtriwmm.lhinntneeeheekeaqcqrnisntuclnitueiihmitvnavwlieivweuteasaimldalvfseeaalonmeteseueirtonnqspfusnesottulpdsioromsiwreyviftpsdneoaapitrdghmlsmilteinioiwsfnpunogisadmetls[tsi5weedrsfiu1omldpe–ancfdrord5tstuiuied3ocnmlrm]net.agilmfuoAleorenwdmsirdsocyibtadietsceoleitsllareoetuesiwlmlmnicsdmstaferiorbietlamusiondetcslteatueihttsdwtmihleieloemaeiesuntdnthaceiulFomeontabloinntiageentituttasohaotewcirensemfetrtiellshon9couoeuaocfetgnlr,khnalfitiaoehtnhnttceaghegocteceaetsufhbthsrroseecoilescofetouuowtsictinfshonrkeateftneteiiaatsemnnlpccrboagbeettlguhotnesssbeirc-b,uloekdurftiiwifnntladhgegceieebnsnslecgotaotwgshlfecseeta,,helene, loglsogwsAewsreaenrmealotmedreonladeteidvleesdfeoprsaesripmaatperlaliyftie, dltyhn, euthmceoerrcincoaerlrnsiejmoriunjoltaistniowtnseowrfeleorrgeehproreuepssreeesnsatetenbduteiblddyinbagyssacearslieee,rsieosf oeflaesltaicstic splrsoipgnsrgiwnwgerietwhmiteohqdueeliqevduailsveanplaternsatteiflsyftn,ifetfhsnese,csotshr,netehrpejroepisnretesnswceenercoeefroenpfrtneosleteonrtlaeendrcabenycgaeaspgeasripewssaowsf aecsloansctosicindseidreedr,eda,nadnd stasstpitrcaintfigrcicwftriiitochntieoqwnuaiwvsaasleisnmst iusmtliafuftnelaedstseb,dythbemypemraenseesannocesf ooCffonCutolooulmelroabmncfboe rgfcoaeprscs,ewass,aassshcoosnhwsoindweirnnediFn, iagFnuidgreur9eb9,cb.,Fc.orFor tdhisistdstdhptihasiialstispalispactlcaelaletfcarerlmentircmceneateraimetnontininvatvetteeonowivffaatapteptoshhppfaesreiprtowmhowapaeuacrlahcllowa,lhcalttae,haccndtelhahlbm,nbceetyaahbmcxnmeoeiamnbemcxsaeuoiindammncsxesorioudiemndfimdssCeupiardoldmsaeueicddslredoapemammidlsseabapnacdgltfeseaaobmcdrmiencetaeedwmamsnig,eceteeeaanbsnsgiteintesnthbhdweiteonhiltwecoedweegniasnescnieeaintannsnhlyFdeittsinhhgtelhouseetehgr[ale5mosen49gaa–aabxs5nnl,i7ycdmaa].s.nlFuteydhomssreet[h5sm4e[a–5mx54i7–am]5x.7ium]m. um FFigiguurere9. 9(a.) A(as)imAplsiifmiedpnliufimeedrincaul mmoedrieclafolrmsimoduelaltifoonrosfilmoguhlaoutisoenbuoifldlionggs hbaosuesdeonbuthieldnionng-s based on the linear spring approach [51]. (b) Full-scale assembly of a log house shear wall. (c) A simplified analnaytnoicanalllyimntiecoaadrlelmsipnocrdliunedgliniangpcdlpuifrdfoe(irabnec)nghtds[p5ifr1fie]n.rge(sbn[5t)5sF]pu(rFli:ln-lasgtcsear[la5el5lao]sa(sdFe,:mpl:abvteelyrrtaioclaflloalaoladod,g,pHh: :ovhueersigteihcsta,h(lLcel:)oalerandwg,tahH,llk:.ehq(:ec)igAhts,iLm: plelnifigethd, Figkuerqe: e9q. u(ai)vAalesnimt sptliifffineedssnuomf tehreiccaol rmneordjeolifnotrs,skimel:uelaqtuioivnaolefnlot gsthifofnuessesb, ufii:ldCionuglsobmabsefdorocnest,hhe:ntoimn-ber lineloarg’ssphrienighatp).proach [51]. (b) Full-scale assembly of a log house shear wall. (c) A simplified analytical model including different springs [55] (F: lateral load, p: vertical load, H: height, L: length, keq: 11, 661 equivalent stiffness of the corner joints, kel: equivalent stiffness, fi: Coulomb forces, h: timber log’s Buildings 202h1,e1i1g,h6t6)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.