Abstract
The implications of earthquake loading during balanced cantilever construction of a cable-stayed bridge are examined. Finite-element models of a cable-stayed bridge were developed and multiple ground motion time history records were used to study the seismic response at the base of the towers for six stages of balanced cantilever construction. Probabilistic seismic hazard relationships were used to relate ground motions to bridge responses. The results show that there can be a high probability of having seismic responses (forces/moments) in a partially completed bridge that exceed, often by a substantial margin, the 10%/50-year design level (0.21% per annum) for the full bridge. The maximum probability of exceedance per annum was found to be 20%. This occurs because during balanced-cantilever construction the structure is in a particularly precarious and vulnerable state. The efficacy of a seismic mitigation strategy based on the use of tie-down cables intended for aerodynamic stability during construction was investigated. This strategy was successful in reducing some of the seismic vulnerabilities so that probabilities of exceedance during construction dropped to below 1% per annum. Although applied to only one cable-stayed bridge, the same approach can be used for construction-stage vulnerability analysis of other long-span bridges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.