Abstract

The 3-D flexible thin shell theory is employed for the strain analysis of near-surface long cylindrical underground structures such as buried pipelines and thin-walled tunnels, against seismic Rayleigh wave propagation. Analytical solutions are initially derived separately for the normal and shear components of Rayleigh waves and are consequently superimposed over time, taking into account the spatial variation of strains over the cross-section. Design strains are finally established by maximizing the analytical expressions against the unknown, random angles of wave incidence. Τhe proposed methodology is compared to the current state-of-practice, via application of the proposed relations to an example problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.