Abstract

ABSTRACTObtaining accurate velocity models plays a crucial role in many routine seismic imaging algorithms. Seismic velocity models are normally made through seismic velocity analysis workflows. The routine workflows are not capable of dealing with polarity variations across moveout curves. We address this limitation by proposing a straight‐forward and robust semblance‐based workflow, which is a modified version of the conventional semblance function. The coherency function applies semblance analysis on separate clusters of receivers followed by averaging the corresponding coherency measures from all the clusters. The proposed approach is suitable for any case of amplitude variations including attenuation and any class of amplitude‐versus‐offset effects. The ability of the proposed workflow is demonstrated to two synthetic data as well as two field‐recorded common‐midpoint gathers. We perform accuracy analysis by comparing the results from the proposed approach with the results achieved from conventional velocity analysis, and another semblance‐based algorithm that is developed to address the polarity variation task. We also studied noise sensitivity analysis by computing and comparing mathematical expectations between theory and practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.