Abstract

In this paper, an analytical method to compute the uplift capacity of an obliquely loaded horizontal strip anchor under both static and seismic conditions is described using the limit equilibrium method. The distribution of the soil reactions on a simple planar failure surface is obtained through the use of Kötter's equation, and the pseudo-dynamic approach is used to obtain the net seismic vertical uplift capacity factor for the unit weight component of the soil (Fγd). The results for the static and seismic vertical uplift capacity factors are determined for various combinations of input parameters, such as the load inclination, the soil friction angle, the embedment ratio, the soil amplification and both horizontal and vertical pseudo-dynamic seismic accelerations. It is observed that the orientation of the load significantly affects the seismic uplift capacity of the horizontal strip anchor. Fγd is seen to decrease with an increase in both horizontal and vertical seismic accelerations and soil amplification, whereas it is seen to increase with an increase in the embedment ratio and the soil friction angle, as expected. The results in terms of the non-dimensional net seismic uplift capacity factor are presented in graphical and tabular forms. The present results are compared and found to be in good agreement with similar results available in literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call