Abstract
The influence of earthquake forces on ultimate bearing capacity of foundations on sloping ground was studied. A solution to seismic ultimate bearing capacity of strip footings on slope was obtained by utilizing pseudo-static analysis method and taking the effect of intermediate principal stress into consideration. Based on limit equilibrium theory, the formulae for computing static bearing capacity factors, N q, N c, N γ, and dynamic bearing capacity factors, N qd, N cd, N γd, which are associated with surcharge, cohesion and self-weight of soils respectively, were presented. A great number of analysis calculations were carried out to obtain the relationship curves of the static and dynamic bearing capacity factors versus various calculation parameters. The curves can serve as the practical engineering design. The calculation results also show that when the values of horizontal and vertical seismic coefficients are 0.2, the dynamic bearing capacity factors N qd, N cd and N γd, in which the effects of intermediate principal stress are taken into consideration, increase by 4%–42%, 3%–27% and 34%–57%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.