Abstract

Ocean bottom seismic observations within the 9°50′N region of the East Pacific Rise indicate persistent, low‐amplitude tremor activity throughout the October 2003 through February 2007 period of monitoring. These signals exhibit either monochromatic or polychromatic spectral characteristics, with a ∼6 Hz fundamental frequency and up to two harmonics. Individual events cannot be correlated between nearby (<1 km) stations, implying the presence of multiple, small‐amplitude sources positioned within the shallow crust. Tremor exhibits a semidiurnal periodicity, with some stations recording activity during times of increasing tidal extension and others detecting tremor signals during times of increasing compression. The amplitude, duration, and rate of activity also correlate positively with fortnightly changes in the amplitude of the tides. These spatiotemporal patterns are consistent with tremor generation in response to tidally modulated fluid flow within a network of shallow cracks. Tremor energy flux is spatially and temporally heterogeneous; however, there are extended periods of greater and lesser activity that can be tracked across portions of the array. Despite their shallow crustal origin, changes in tremor amplitude and spectral character occur in the months prior to a major microearthquake swarm and inferred seafloor spreading event on 22 January 2006, with an increase in the degree of correlation between tremor activity and tidal strain in the weeks leading up to this event. After the spreading event, two eruption‐surviving stations near the axis continue to show high rates of tremor activity, whereas these signals are suppressed at the single station recovered from the near‐axis flanks. This off‐axis quiescence may result from the dike‐induced closing of cracks or perhaps from the emplacement of impermeable flows near the station.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.