Abstract

Natural fractures in reservoirs, and in the caprock overlying the reservoir, play an important role in determining fluid flow during production. The density and orientation of sets of fractures is therefore of great interest. Rocks possessing an anisotropic fabric and a preferred orientation of fractures display both polar and azimuthal anisotropy. Sedimentary rocks containing several sets of vertical fractures may be approximated as having monoclinic symmetry with symmetry plane parallel to the layers if, in the absence of fractures, the rock is transversely isotropic with symmetry axis perpendicular to the bedding plane. A nonhyperbolic traveltime equation, which can be used in the presence of azimuthally anisotropic layered media, can be obtained from an expansion of the inverse‐squared ray velocity in spherical harmonics. For a single set of aligned fractures, application of this equation to traveltime data acquired at a sufficient number of azimuths allows the strike of the fractures to be estimated. Analysis of the traveltimes measured in a physical model simulation of a reverse vertical seismic profile in an azimuthally anisotropic medium shows the medium to be orthorhombic with principal axes in agreement with those given by an independent shear‐wave experiment. In contrast to previous work, no knowledge of the orientation of the symmetry planes is required. The method is therefore applicable to P‐wave data collected at multiple azimuths using multiple offset vertical seismic profiling (VSP) techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call