Abstract

A quarter-scale, two-span reinforced concrete bridge was tested using the shake-table system at the University of Nevada, Reno. The shake-table tests were part of a multiuniversity, multidisciplinary project utilizing the network for earthquake engineering simulation, with the objective of investigating the effects of soil-foundation-structure interaction on bridges. This paper discusses the development and testing of the bridge model, and selected experimental results, including those that demonstrate the effects of incoherent motions and stiffness irregularities on the distribution of forces and deformations within the bridge system. Motion incoherency affected the asymmetric bridge response (planar torsion of the superstructure), but had little effect on the symmetric bridge response (center-of-mass displacement of the superstructure). These experimental findings are consistent with conclusions from numerical analyses conducted by other researchers. During a 2.0g PGA earthquake excitation, numerous longitudinal bars buckled and fractured at a drift ratio between 5.5 and 7.9%. Despite the level of damage, detailing of the column transverse reinforcement according to NCHRP 12-49 guidelines provided sufficient column ductility to prevent collapse during a subsequent 1.4g PGA earthquake excitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call