Abstract

Most of hydrocarbon accumulations within the Gulf of Hammamet foreland basins in eastern Tunisia are reservoired within the Upper Miocene Birsa and Saouaf sandstones. It is the case of Birsa, Tazarka, Oudna, Baraka, Maamoura, Cosmos and Yasmine fields. These sandstones constitute oil and gas fields located on folded and faulted horst anticline highs and described as varying from shoreface to shallow marine and typically exhibit excellent reservoir quality of 30 to 35% porosity and good permeability from 500 to 1100 md. In addition, the fracturing of faults enhanced their reservoir quality potential. However, due to the lack of seismic stratigraphic studies to highlight depositional environment reservoir characterization and distribution, petroleum exploration faces structural and stratigraphic trap types and remains on targeting only high fold closures with limited reserve volumes of hydrocarbons. As an example of the Birsa concession case, syn-sedimentary tectonic structuring and geodynamic evolution during Middle to Upper Miocene Birsa reservoir sequences have guided the distribution of depositional environment of sandstone channel systems around horst and grabens by E-W, NE-SW and N-S strike slip flower faults controlling the subsidence distribution combined with the eustatic sea level variations. Seismic sequence stratigraphy study of Miocene Birsa reservoir horizons, based on the analysis and interpretations of E-W and N-S 3D selected regional lines that were compared and correlated to outcrops and calibrated by well data, permitted to highlight the basin configuration and sequence deposit nature and distribution. Sedimentary infilling of the basin from Langhian Ain Ghrab carbonate to Serravallian Tortonian Birsa and Saouaf sandstone and shale formations is organized in four third-order seismic sequences, limited by regional erosional toplap, onlap and downlap unconformity surfaces and by remarkable chronostratigraphic horizons of forced and normal erosive lowstand and highstand system tracts separated by transgressive and maximum flooding surfaces. Reconstructed sedimentary paleo-environment distribution vary from deltaic fluvial proximal deposits in the northern part of the high central Birsa horst to a delta front and prodelta coastal and shelf shore face and shore line channelized deposits in the surrounding borders of grabens. Distal deposits seem to be distributed from upper to lower slope fans and probably to the basin floor on the flanks of the subsiding grabens. Synthetic predictive paleogeographic depositional reservoir fairway map distribution of Lower, Middle and Upper Birsa sandstone reservoirs highlights four main domains of channelized superposed and shifted reservoirs to explore.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call