Abstract

In this paper, the seismic behavior of a 10-story building equipped with viscoelastic dampers is analyzed. The effects of ambient temperature, the thickness, the total area, and the position of the viscoelastic dampers are studied. Results indicate that the energy-absorbing capacity of viscoelastic damper decreases with increasing the ambient temperature. The thickness and the total area of viscoelastic dampers also affect the seismic mitigation capacity. The thickness cannot be too small, which is not effective in vibration reduction, nor can it be too large, which not only increases the cost but also reduces the seismic resistance. The total area of viscoelastic dampers should be determined properly for optimum damper performance at the most economical design. The mounting position of viscoelastic dampers also influences the structure's seismic performance. Numerical results show that, if properly equipped, the VE dampers can reduce the structural response both floor displacement and story shear force and increase the overall level of damping in structures during earthquakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.