Abstract

A nearly 500-km-long seismic profile with reflective and refractive wide-angle Ocean Bottom Seismometer (OBS) data and Multi-Channel Seismic (MCS) data was acquired across the northeastern continental margin of the South China Sea (SCS). The S-wave crustal structure and Vp/ Vs ratios have been obtained based on a previously published P-wave model using the software RayInvr. Modeling of vertical- and horizontal-component OBS data yields information on the seismic crustal velocities, lithology, and geophysical properties along the OBS-2001 seismic profile. S-wave velocities in the model increase generally with depth but exhibit high spatial variability, particularly from the shelf to the upper slope of the northeastern SCS margin. Vp/ Vs ratios also reveal significant lithological heterogeneity. Dongsha–Penghu Uplift (DPU) is a tectonic zone with a thicker crust than adjacent areas and a high magnetic anomaly. With a Vp/ Vs of 1.74 and a P-wave velocity of 5.0–5.5 km/s, the DPU primarily consists of felsic volcanic rocks in the upper crust and is similar to the petrology of Zhejiang–Fujian volcanic provinces, which perhaps is associated with a Mesozoic volcanic arc. The ocean–continent transition (OCT) in the northeastern SCS is characterized by a thinning continental crust, volcanoes in the upper crust, and a high velocity layer (HVL) in the lower crust. The S-wave velocity and Vp/ Vs ratio suggest that the HVL has a mafic composition that may originate from underplating of the igneous rocks beneath the passive rifted crust after the cessation of seafloor spreading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call