Abstract

Abstract Single-channel, very high-resolution seismic profiles allow detailed study of the Late Quaternary stratigraphic architecture of the Gulf of Cádiz continental margin, Southern Spain. The Late Quaternary stratigraphy of this area comprises fourth-order Type 1 composite depositional sequences, generated by asymmetric relative sea-level changes of 100–110 ka duration. The composite fourth-order sequences consist of forced regressive, lowstand, transgressive and highstand systems tracts. Volumetrically, the forced regressive and lowstand systems tracts are the most important components. The fourth-order composite sequences are themselves comprised of composite fifth-order sequences formed in response to asymmetric relative sea-level changes with a duration of 22–23 ka. Sediments within the forced regressive and lowstand systems tracts dominate the 5th-order sequences; their transgressive and highstand deposits are either (i) perched above present-day sea-level and so not recorded in marine seismic data, (ii) restricted to outer-mid-shelf positions, or (iii) may be absent from the shelf altogether at the resolution of this study (e.g.<0.5 m thick). The fifth-order sea-level falls were themselves modulated by minor cycles, generating very high-frequency (sixth-order) sequences. These very high-order sequences are recognized for the last 80 ka bp , and their development is attributed to asymmetric relative sea-level cycles operating on time scales of: 10–15 ka (Heinrich events), 4–4.5 ka. (P cycles), 2.3–0.97 ka. (Dansgaard-Oeschger oscillations h cycles) and 500–50 a. (c cycles). We have developed a depositional model that accounts for the very high-frequency hierarchy of Late Quaternary depositional sequences observed in the Gulf of Cadiz marine seismic record and incorporates the age of well-constrained highstand coastal deposits that are exposed along the southern Iberian coastline. The model developed serves to illustrate the evolution and importance of depositional systems during falling relative sea-level and forced regression. Development of the forced regressive systems tract appears to be particularly significant within Quaternary strata. This is because the Quaternary was strongly influenced by a high-amplitude, high-frequency glacioeustatic signal characterized by rapid sea-level rises, very short highstands, and gradual relatively long-term sea-level falls suggesting that forced regressive deposits are likely to predominate in continental margin successions subject to low rates of subsidence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.