Abstract

This work assesses the seismic stability of tunnel faces advanced in heterogeneous and anisotropic soils based on the plastic limit theorem. A discretized kinematic velocity field respecting the normal flow rule is generated via a point-to-point discretization technique. The distribution of soil parameters in the depth direction including cohesion, friction angle, and unit weight are considered by four kinds of profiles. The variation in cohesion with shear direction caused by consolidation and sedimentation is considered by including an anisotropy coefficient. The seismic acceleration is represented by the modified pseudodynamic method (MPD) rather than the conventional pseudodynamic method (CPD). Based on the energy equilibrium equation, an upper-bound solution is derived. The accuracy and rationality of the proposed procedure are substantiated by comparing with the solutions obtained by conventional log-spiral mechanism and CPD. A parametric study indicates that nonlinear profiles tend to predict a smaller required face pressure than the constant and linear profiles due to the convexity of nonlinear profiles. The over-consolidated soil is more sensitive to the anisotropy coefficient than normally consolidated soil. Moreover, the adverse effect of horizontal seismic acceleration is much greater than that of vertical acceleration, and the resonance effect is more prone to happen, especially for shallow-buried tunnels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call