Abstract
The main purpose of the paper is the analysis of seismic site effects in various alluvial basins. The analysis is performed considering a numerical approach (boundary element method). Two main cases are considered: a shallow deposit in the centre of Nice (France) [Soil Dyn. Earthquake Engng 19 (2000) 345] and a deep irregular basin in Caracas (Venezuela) [Comput. Geotech. 29 (2002) 573]. The amplification of seismic motion is analysed in terms of level, occuring frequency and location. For both sites, the amplification factor is found to reach maximum values of 20 (weak motion). Site effects nevertheless have very different features concerning the frequency dependence and the location of maximum amplification. For the shallow deposit in Nice, the amplification factor is very small for low frequencies and fastly increases above 1.0 Hz. The irregular Caracas basin gives a much different frequency dependence with many different peaks at various frequencies. The model for Caracas deep alluvial basin also includes a part of the local topography such as the nearest mountain. One can estimate seismic site effects due to both velocity contrast (between the basin and the bedrock) and local topography of the site. Furthermore, the maximum amplification is located on the surface for Nice, whereas some strong amplification areas also appear inside the basin itself in the case of Caracas. One investigates the influence of this focusing effect on the motion versus depth dependence. This is of great interest for the analysis of seismic response of underground structures. The form and the depth of alluvial deposits are then found to have a great influence on the location of maximum amplification on the surface but also inside the deposit for deep irregular basins. It is essential for the analysis of the seismic response of both surface and underground structures.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.