Abstract

When designing buried structures using a performance-based framework, it is important to estimate their uplift displacement. A simplified method is proposed for predicting the uplift displacement of a hollow cylinder structure buried in shallow backfill based on the equilibrium of vertical forces acting on the structure during earthquakes. However, this method only provides the maximum value, which frequently is overestimated in practical applications. To offset this limitation, first, the uplift behavior of buried hollow cylinder structures subjected to strong earthquake motions was simulated. Then, two-dimensional effective stress analyses based on the multiple shear mechanism for soil were conducted, and the results were compared with the centrifuge test data. The soil parameters were evaluated based on laboratory test results. The seismic response data from 20g centrifuge tests were analyzed, and the results were generally consistent with the results of centrifuge model tests. In particular, the effective stress model showed a reasonable ability to reproduce the varying degrees of uplift displacement depending on the geotechnical conditions of trench soils adjacent to the hollow cylinder structures buried in shallow ground.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.