Abstract

Rock pore structure is one of the important parameters in controlling both seismic wave velocity and permeability in sandstones and carbonate rocks. For a given porosity of two similar rocks with different pore structures, their acoustic wave speeds can differ 2 km/s, and permeability can span nearly six orders of magnitude from 0.01 mD to 20 D in both sandstone and limestone. In this paper, we summarize a two-parameter elastic velocity model reduced from a general poroelastic theory, to characterize the effect of pore structures on seismic wave propagation. For a given mineralogy and fluid type of a reservoir, this velocity model is defined by porosity and a frame flexibility factor, which can be used in seismic inversion and reservoir characterization to improve estimation of porosity and reserves. The frame flexibility factor can be used for quantitative classification of rock pore structure types (PST) and may be related to pore connectivity and permeability, using both poststack and prestack seismic data. This study also helps explain why amplitude versus offset analysis (AVO) in some cases fails for the purpose of fluid detection: pore structure effect on seismic waves can mask all the fluid effects, especially in carbonate rocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call