Abstract

Micro-Electro-Mechanical-Systems (MEMS) accelerometers have great potential in many applications such as remote infrastructure monitoring, automotive industry and also in military and surveillance systems as a part of the Unattended Ground Sensor (UGS) systems. A detection of human activity and vehicle movement in monitored area using seismic signals is complex problem and it brings new challenges into the seismic sensor design and signal processing methods. One of the main objectives of the paper is to present a concept of seismic sensor system dedicated for human activities and vehicles movement detection. In this paper, we explore the possibility of the seismic sensor system which consists of the low noise MEMS accelerometer SF1500S.A, low noise 24-bit Sigma-Delta analog to digital converter and digital signal processor. For evaluation of the seismic sensor system performance, series of field measurements for human footfalls detection were carried out. In order to determine the seismic signature of human footfalls, seismic signals were analyzed and processed in time, frequency and time-frequency domain. In conclusion, the outputs of experiments are evaluated and also the further research in seismic sensor system field is outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.