Abstract

Damage identification soon after a large-magnitude earthquake is a major problem for early disaster response activities. The faster the damaged areas are identified, the higher the survival chances of inhabitants. Current methods for damage identification are based on the application of artificial intelligence techniques using remote sensing data. Such methods require a large amount of high-quality labeled data for calibration and/or fine-tuning processes, which are expensive in the aftermath of large-scale disasters. In this paper, we propose a novel semi-supervised classification approach for identifying urban changes induced by an earthquake between images recorded at different times. We integrate information from a small set of labeled data with information from ground motion and fragility functions computed on large unlabeled data. A relevant consideration is that ground motion and fragility functions can be computed in real time. The urban changes induced by the 2023 Turkey earthquake sequence are reported as an evaluation of the proposed method. The method was applied to the interferometric coherence computed from C-band synthetic aperture radar images from Sentinel-1. We use only 39 samples labeled as changed and 9000 unlabeled samples. The results show that our method is able to identify changes between images associated with the effects of an earthquake with an accuracy of about 81%. We conclude that the proposed method can rapidly identify affected areas in the aftermath of a large-magnitude earthquake.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call