Abstract

AbstractWe study the seismic vulnerability of the interdependent European gas and electricity transmission networks from a topological point of view, whereby the electricity network depends on the gas network through gas‐fired power plants. First, we assessed the seismic response for each independent network; then we analyzed the increased vulnerability due to their interdependency. We implemented a probabilistic reliability model that encompasses the spatial distribution of both network structures and their seismic hazard exposure using a Geographic Information System. We characterized the network interdependency using the strength of coupling of the interconnections, together with the seismic response of the independent—gas—network. We calculated the network fragility curves of the independent and dependent networks in terms of various performance measures (connectivity loss, power loss, and impact on the population) and found that the gas network is more seismically vulnerable than the electricity network. The interdependency introduces an extra vulnerability to the electricity network response that decreases with the extensiveness of the networks' damage states. Damage was also evaluated at a local level in order to identify the most vulnerable parts of the network, where it was found that the potential for the highest power loss is located in southeast Europe. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call