Abstract

Masonry vaults represent one of the most seismic vulnerable element in an ancient building. It also generally does not possess an adequate capability of redistribution of the seismic action among the walls of the buildings. In this paper, the structural behaviour of a masonry barrel vault strengthened by a new technology in applying Carbon Fiber Reinforced Polymer (C-FRP) is discussed from both theoretical and experimental point of view. The C-FRP is applied such as to assume an Ω shape around a concrete core realized at the vault extrados. This arrangement allows the resulting CFRP reinforced ribbed vault to assume the necessary strength and membranal and flexural rigidity so as to ensure the aforementioned seismic action redistribution capability and to avoid local collapse of the vault. A theoretical prediction of ultimate strength was derived in agreement with the occurrences observed during the experiments (masonry crushing, FRP rupture, debonding, sliding along the mortar joint). To this aim, a novel incremental step-by-step lower bound limit analysis approach was developed taking into account for the shear failure mechanism at each mortar joint. The shear strength is evaluated by the Mohr-Coulomb friction law for the mortar joint and by other nonlinear Italian Code relations for CFRP Ω-Wrap reinforcement. In the approximated incremental analysis process the current value of the shear strength, depend on the compressive stress resulting from the previous step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call