Abstract

An aqueduct is a bridge-like structure that supports a canal passing over a river or low ground, and it is an important part of a water conveyance system. Aqueduct piers are extremely vulnerable to damage during strong earthquakes that can result in structural collapse. Further, excessive seismic displacement will also fracture an aqueduct’s rubber water-stop and interrupt the normal service of an aqueduct after an earthquake. Therefore, improving the seismic capacity and post-earthquake resilience of aqueducts is of great importance. In this paper, a new type of self-centering seismic isolation bearing, the inclined plane guide bearing (IPGB), is proposed for the seismic design of aqueducts, and it is studied both experimentally and numerically. Firstly, a typical aqueduct project and the setting of the IPGBs are introduced. Then, the test design, test cases, and test results of shaking table tests for two different pier-height aqueducts are presented. The seismic responses of the two models are studied, and the results show that the aqueduct that used IPGBs has a smaller bearing displacement and better post-earthquake resilience. Finally, a numerical simulation method applicable to aqueducts using IPGBs is proposed, and its accuracy is verified by comparing the results of the numerical simulation and the shaking table test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.