Abstract

Seismic response analyses of structures have conventionally used the peak ground acceleration or spectral acceleration as an intensity measure to estimate the engineering demand parameters. An extensive shaking table test program was carried out on a quarter-sized advanced gas-cooled reactor (AGR) core model to investigate the global dynamic behavior of the system with degraded graphite components while subjected to seismic excitation. Evaluation of the most widely considered intensity measures, with respect to their capability for predicting the seismic response of an AGR core–like structure, is performed. Twenty intensity measures of 16 distinct seismic input motions are formulated and correlated, with experimental measurements describing the dynamic response of the reactor core model. Linear correlations are constructed for each intensity measure to statistically determine the best metric for predicting the seismic response of the AGR core model, and statistical analysis indicates that the acceleration spectrum intensity (ASI) is best suited to characterize and describe the structural demand of an AGR core-like structure when subjected to seismic loading. A response prediction tool is developed, based on empirically derived linear correlations, to estimate column distortions and determine the critical input motion for further experimental and numerical studies. Statistical analysis indicates that predicted column distortions, compared against direct experimental displacements, are significant, repeatable, and accurate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call