Abstract
Shear walls have extremely high in-plane strength and stiffness and also can counter heavy lateral loads making them quite advantageous in high-rise buildings. It is suggested to incorporate them in structures built in the places where there are chances of large intensity earthquakes or high winds. Positioning of the shear wall plays a very critical task in an asymmetric and irregular building subjected to earthquake forces. In our study, the main aim is to locate the advantageous position of the shear wall in Y-shaped asymmetric and irregular G+14 building in zone IV. The study is done by using a software package, CSI ETABS ver. 18.0.2. We have carried out Response Spectrum Analysis and Time History Analysis for this study. In this study, fourteen test models with unique location of shear wall are considered and parameters such as Time Period, Storey Displacement, Static Eccentricity, Storey Drift, Joint Displacement, Base Shear, and Base Force, are compared with the bare model. Thus, the best location of shear wall is suggested based on models having least static eccentricity, minimum displacement, Minimum drift, Minimum time period, Minimum joint displacement and Maximum base shear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indian Journal of Engineering and Materials Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.