Abstract

The performance of pile foundations in liquefiable soil subjected to earthquake loading is a very complex process. The strength and stiffness of the soil decrease due to the increase in pore pressure. The pile can be seriously destroyed by the soil liquefaction during strong earthquakes. This paper presents the response of vertical piles in liquefiable soil under seismic loads. A finite difference model, known as fast Lagrangian analysis of continua, is used to study the pile behavior considering a nonlinear constitutive model for soil liquefaction and pile–soil interaction. The maximum lateral displacement and maximum pile bending moment are obtained for different pile diameters, earthquake predominant frequencies, Arias intensities, and peak accelerations. It is found that the maximum lateral displacement and the maximum pile bending moment increase when the predominant earthquake frequency value decreases for a given peak acceleration value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call