Abstract

The effectiveness of passive multiple-tuned mass friction dampers (P-MTMFDs) over a single passive-tuned mass friction damper (P-TMFD) is investigated. The governing differential equations of motion are solved numerically using state-space method. The response of a five-story structure is investigated for four considered earthquake ground motions. The number of P-TMFD units of P-MTMFDs is varied and the response of five-story structure with single P-TMFD is compared with the response of the same structure with P-MTMFDs. A parametric study is also conducted to investigate the effects of important parameters like number of P-TMFD units in P-MTMFDs, frequency spacing, mass ratio, tuning ratio and damper slip force. It is found that at a given level of excitation; an optimum value of considered important parameters exists at which the peak displacement of structure attains its minimum value. The response time history of the structure with single P-TMFD and P-MTMFDs, with respect to their optimum parameters is compared. It is found that the P-MTMFDs are more effective in controlling the response of the structure to which it is attached in compare to the single P-TMFD having same mass.

Highlights

  • Tuned mass damper (TMD) is the most popular and extensively used device to control vibration in civil andThe main disadvantage of a STMFD is its sensitivity of the effectiveness to the error in the natural frequency of the structure

  • The specific objectives of the study are summarized as to (1) formulate the equations of motion and develop solution procedure for the response of multi degree of freedom (MDOF) system with MTMFD, under seismic excitations, numerically; (2) investigate the influence of important parameters like number of dampers in MTMFD, mass ratio, tuning ratio, frequency spacing and damper slip force on the performance of the MTMFD; (3) obtain optimum values of influencing parameters for different mass ratios of the MTMFD, which may find application in the effective design of MTMFD; and (4) to compare the response of MDOF system attached with MTMFD to the response of same system attached with STMFD having same total mass

  • The response of five story structure with STMFD and MTMFD is investigated under four different seismic excitations

Read more

Summary

Introduction

Tuned mass damper (TMD) is the most popular and extensively used device to control vibration in civil and. If the design parameters of the TMD are selected wrongly, it may accelerate the vibration of the system instead of attenuating it To overcome this difficulty, many researchers had proposed the use multiple tuned mass damper (MTMD) with different dynamic characteristics (Xu and Igusa 1992; Joshi and Jangid 1997). Similar to the TMD the STMFD have the same disadvantage that it performs effectively only in a narrow frequency range. The specific objectives of the study are summarized as to (1) formulate the equations of motion and develop solution procedure for the response of multi degree of freedom (MDOF) system with MTMFD, under seismic excitations, numerically; (2) investigate the influence of important parameters like number of dampers in MTMFD, mass ratio, tuning ratio, frequency spacing and damper slip force on the performance of the MTMFD; (3) obtain optimum values of influencing parameters for different mass ratios of the MTMFD, which may find application in the effective design of MTMFD; and (4) to compare the response of MDOF system attached with MTMFD to the response of same system attached with STMFD having same total mass

Modeling of MDOF system with MTMFD
Governing equations of motion and solution procedure
ÀKd r
Numerical study
Effect of mass ratio
Effect of tuning ratio
Effect of frequency spacing
Effect of friction force
Effect of number of TMFD unit in MTMFD
Optimum parameters
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.