Abstract

In this paper, efficiency and effectiveness of carbon fiber-reinforced polymers (CFRP) in upgrading the shear strength and ductility of seismically deficient beam-column joints have been studied. For this purpose, four reinforced concrete interior beam-column sub-assemblages were constructed with nonoptimal design parameters (inadequate joint shear strength with no transverse reinforcement) representing preseismic code design construction practice of joints and encompassing the vast majority of existing beam-column connections. Out of these four, two specimens were used as baseline specimens (control specimens) and the other two were strengthened with CFRP sheets under two different schemes (strengthened specimens). In the first scheme, CFRP sheets were epoxy bonded to the joint, beams, and part of the column regions. In the second scheme, however, sheets were epoxy bonded to the joint region only but they were effectively prevented against any possible debonding through mechanical anchorages. All four su...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.