Abstract

The inelastic response of reinforced concrete (RC) frames under seismic loading is influenced by mechanical and geometrical properties and by the reinforcement arrangement of the beam–column members. In this paper, the seismic response and recentering behavior of RC frames is investigated numerically via cyclic pushover analysis and described by means of three synthetic behavioral indexes, namely a recentering index, a hardening index, and a ductility index. A fiber–hinge formulation is used to describe the inelastic behavior of the RC elements, and the versatile pivot hysteresis model is implemented at the material level to capture the possible pinching effects ascribed to the weak transverse reinforcement and to poor construction details that might be observed in the existing RC structures. This model is first validated against the experimental results from the literature and then applied, within a wide parametric study, to a set of 80 RC frame scenarios featured by various combinations of axial load levels and reinforcing details. As the output of this parametric study, practical design abacuses are constructed to describe the trends of the above-mentioned behavioral indexes, which are usefully related to specific mechanical and loading features of the analyzed RC frames. The reliability of the obtained results and the usefulness of the constructed abacuses in anticipating the overall cyclic behavior of a generic RC building, depending on the actual mechanical parameters of the RC sections at each story level, is finally demonstrated through a nonlinear time history analysis of an eight-story RC frame, representative of the substandard RC frames built in the 1970s in Italy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call