Abstract

AbstractThis paper presents an experimental study of the seismic response of a 0.6-scale three-story building with nonlinear viscous dampers under the design basis earthquake (DBE) and the maximum considered earthquake (MCE). The test structure consists of a moment-resisting frame (MRF) with reduced beam sections (RBS), a frame with nonlinear viscous dampers and associated bracing (called the DBF), and a gravity load system. The paper focuses on quantifying and assessing the seismic response of the test structure under the DBE and MCE. Three MRF designs were studied for 100, 75, and 60%, respectively, of the required base shear design strength according to ASCE 7-10. The DBF with nonlinear viscous dampers was designed to control the lateral drift demands. Earthquake simulations using ensembles of ground motions were conducted using the real-time hybrid simulation method. Experimental results show that a high level of seismic performance can be achieved under DBE and MCE ground motions, even for a building...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call