Abstract

A numerical investigation regarding the seismic behavior of complex-3D steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (GF) is conducted. The interior connections are assumed to be first perfectly pinned (PP) and then semi-rigid (SR); the two model responses are compared. Three steel building models representing low-, medium- and high-rise buildings, and several strong motions are used. The relative stiffness of SR connections is calculated according to the Richard Model and the Beam Line Theory. The Ruaumoko Computer Program is used to perform the required step-by-step nonlinear seismic analysis. Results indicate that interstory shears and interstory displacements at PMRF may be significantly reduced when interior connections are modeled as SR. Average reductions of up to 20, 46 and 11% are observed for interstory shears, for low-, medium-, and high-rise buildings, respectively. The corresponding reductions for interstory displacements are about 14, 44 and 15%. The contribution of GF to the lateral resistance is considerable, which significantly increases when the connections are modeled as SR; relative contributions larger than 80% are observed. The dissipated energy (DE) at PMRF is larger for the buildings with PP than for the buildings with SR connections indicating that damage at PMRF is reduced. Thus, the effect of the stiffness and the DE at interior connections should not be ignored. However, the design of some elements, particularly columns of the GF, has to be revised; these members may not be able to support the loads produced by the neglected lateral contribution if they are not properly designed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call