Abstract

In order to evaluate the seismic reliability of water distribution system and make rehabilitation decisions correspondingly, it is necessary to assess pipelines damage states and conduct functional analysis based on pipe leakage model. When an earthquake occurred, the water distribution system kept serving with leakage. By adding a virtual node at the centre of the pipeline with leakage, an efficient approach to pressure-driven analysis was developed for simulating a variety of low relative scenarios, and a hydraulic leakage model was also built to perform hydraulic analysis of the water supply network with seismic damage. Then the mean-first-order-second-moment method was used to analyse the seismic serviceability of the water distribution system. According to the assessment analysis, pipes that were destroyed or in heavy leakage were isolated and repaired emergently, which improved the water supply capability of the network and would constitute the basis for enhancing seismic reliability of the system. The proposed approach to seismic reliability and rehabilitation decision analysis on water distribution system is demonstrated effective through a case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.